Πέμπτη, 8 Μαρτίου 2012

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΜΟΥΣΙΚΗ (ΕΝΑ ΕΝΔΙΑΦΕΡΟΝ ΑΡΘΡΟ)

Μαθηματικά και μουσική

Τα μαθηματικά και η μουσική είναι δυο επιστήμες που έχουν πολύ μεγάλη σχέση μεταξύ τους. Από την αρχαιότητα ακόμη οι δύο τέχνες αλληλεπιδρούν μεταξύ τους και η αλληλεπίδραση αυτή φτάνει ως τις μέρες μας...
Η ιδέα της σύνδεσης των μαθηματικών και της μουσικής γεννήθηκε πριν από 26 ολόκληρους αιώνες στην αρχαία Ελλάδα από τον Πυθαγόρα, μαθηματικό και ιδρυτή της πυθαγόρειας σχολής σκέψης. Ο φιλόσοφος γνώριζε πολύ καλά τη σχέση της μουσικής με τους αριθμούς. Οι ειδικοί ερευνητές θεωρούν ότι το πιθανότερο είναι πως ο ίδιος και οι μαθητές του εντρύφησαν στη σχέση της μουσικής και των αριθμών μελετώντας το αρχαίο όργανο μονόχορδο.
Όπως φαίνεται από το όνομά του, το μονόχορδο ήταν ένα όργανο με μία χορδή και ένα κινητό καβαλάρη που διαιρούσε τη χορδή επιτρέποντας μόνο ένα τμήμα της να ταλαντώνεται και που από αρκετούς μελετητές τοποθετείται στην οικογένεια του λαούτου δηλαδή με βραχίονα, χέρι. Το μονόχορδο χρησιμοποιήθηκε για τον καθορισμό των μαθηματικών σχέσεων των μουσικών ήχων. Ονομάζονταν και "Πυθαγόρειος κανών" γιατί απέδιδαν την εφεύρεσή του στον Πυθαγόρα. Πολλοί μεγάλοι μαθηματικοί εργάσθηκαν για τον υπολογισμό των μουσικών διαστημάτων πάνω στον κανόνα, όπως ο Αρχύτας (εργάσθηκε στις αναλογίες των διαστημάτων του τετραχόρδου στα τρία γένη, διατονικό, χρωματικό και εναρμόνιο και ανακάλυψε το λόγο της μεγάλης τρίτης στο εναρμόνιο γένος), ο Ερατοσθένης ο Δίδυμος (σ΄ αυτόν αποδίδεται ο καθορισμός του "κόμματος του Διδύμου", που είναι η διαφορά μεταξύ του μείζονος τόνου (9/8) και του ελάσσονος (10/9) δηλαδή 81/80). 
 
Όμως, πώς ακριβώς πειραματίστηκαν οι Πυθαγόρειοι στο μονόχορδο, για την ανάδειξη των σχέσεων μαθηματικών και μουσικής; Ήταν εντυπωσιακό το γεγονός ότι μόνο οι ακριβείς μαθηματικές σχέσεις έδιναν αρμονικούς ήχους στο μονόχορδο. Για παράδειγμα, έπρεπε να χωρίσουν ακριβώς στη μέση τη χορδή, και όχι περίπου στη μέση, ώστε να έχουν το ευχάριστο ψυχικό συναίσθημα που απορρέει από έναν αρμονικό ήχο.
Αν μειώσουμε λοιπόν το μήκος μιας χορδής ακριβώς στο μισό, τότε ο ήχος που παράγεται είναι ακριβώς μία οκτάβα υψηλότερος (μία οκτάβα είναι ένα ντο, ρε, μι, φα, σολ, λα, σι, ντο) - μας δίνει, δηλαδή, ένα ντο πιο πάνω. Αν μειώσουμε το μήκος της χορδής κατά 1/3, τότε τα 2/3 της χορδής που απομένουν μας δίνουν τη διαφορά της πέμπτης (δηλαδή από το ντο στο λα). Κι αν μειώσουμε το μήκος κατά 1/4, τότε τα 3/4 που απομένουν μας δίνουν τη διαφορά της τετάρτης (από το ντο στο σολ). Ήταν ξεκάθαρο, λοιπόν, σ’ αυτό το επίπεδο της παρατήρησης ότι τα μαθηματικά "κυβερνούν" τη μουσική. Το γεγονός ότι από τους ήχους αυτών των διαφορών δημιουργείται ένα ευχάριστο συναίσθημα στον ακροατή, οδήγησε τους Πυθαγορείους στο συμπέρασμα ότι οι ακέραιοι και τα κλάσματα ελέγχουν όχι μόνο τον άψυχο αλλά και τον έμψυχο κόσμο μέσω της μουσικής.
Για τους Πυθαγορείους, αυτή η άμεση και ακριβής σχέση μαθηματικών, μουσικής και ευχάριστου ψυχικού συναισθήματος αποτελούσε τη μέγιστη απόδειξη ότι η αλήθεια, στο ύψιστο επίπεδό της, εκφράζεται με μαθηματικές σχέσεις. Πίστευαν, μάλιστα, ότι η ψυχή, μέσα από τα μαθηματικά και τη μουσική, μπορούσε να εξυψωθεί ώσπου να ενωθεί με το σύμπαν και ότι ορισμένα μαθηματικά σύμβολα έχουν αποκρυφιστική σημασία. Στις αρχές της αρμονίας των Πυθαγορείων βασίστηκε η ευρωπαϊκή μουσική μέχρι, τουλάχιστον, τη στιγμή που ο Γιόχαν Σεμπάστιαν Μπαχ, μέσω της σύνθεσής του "Καλοσυγκερασμένο Κλειδοκύμβαλο" πρότεινε την υποδιαίρεση της οκτάβας σε δώδεκα ημιτόνια - κάτι, παρεμπιπτόντως, που είχε προτείνει δύο χιλιάδες χρόνια πριν από τον Μπαχ ο Αριστόξενος, όμως δεν εισακούστηκε
Συμπερασματικά, παρά τον ηθικοθρησκευτικό χαρακτήρα της διδασκαλίας του, ο Πυθαγόρας και οι μαθητές του διαμόρφωσαν φιλοσοφικές αρχές που επηρέασαν την πλατωνική και αριστοτελική διανόηση, κυρίως όμως συνέβαλαν στην ανάπτυξη των μαθηματικών, της μουσικής και της δυτικής φιλοσοφίας. Καθιέρωσαν την αντίληψη ότι η πραγματικότητα - συμπεριλαμβανομένης της μουσικής και της αστρονομίας- είναι στο βαθύτερο επίπεδό της μαθηματικής φύσης .
 
Δημοσίευση σχολίου